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A discussion of the fundamental interrelation of geometry and physical laws with 
Lie groups leads to a reformulation and heuristic modification of the principle of 
inertia and the principle of equivalence, which is based on the simple de Sitter 
group instead of the Poincar~ group. The resulting law of motion allows a unified 
formulation for structureless and spinning test particles. A metrical theory of 
gravitation is constructed with the modified principle, which is structured after 
the geometry of the manifold of the de Sitter group. The theory is equivalent to a 
particular Kaluza-Klein theory in ten dimensions with the Lorentz group as 
gauge group. A restricted version of this theory excludes torsion. It is shown by a 
reformulation of the energy momentum complex that this version is equivalent to 
general relativity with a cosmologic term quadratic in the curvature tensor and in 
which the existence of spinning particle fields is inherent from first principles. 
The equations of the general theory with torsion are presented and it is shown in 
a special case how the boundary conditions for the torsion degree of freedom 
have to be chosen such as to treat orbital and spin angular momenta on an equal 
footing. The possibility of verification of the resulting anomalous spin-spin 
interaction is mentioned and a model imposed by the group topology of S0(3, 2) 
is outlined in which the unexplained discrepancy between the magnitude of the 
discrete valued coupling constants and the gravitational constant in Kaluza-Klein 
theories is resolved by the identification of identical fermions as one orbit. The 
mathematical structure can be adapted to larger groups to include other degrees 
of freedom. 

1. I N T R O D U C T I O N  

A f t e r  t he  f i r s t  n o n - E u c l i d i a n  g e o m e t r i e s  we re  i n t r o d u c e d  in the  1 9 t h  

c e n t u r y ,  R i e m a n n  (1976)  p o i n t e d  o u t  t he  c o m p l e m e n t a r i t y  o f  g e o m e t r y  a n d  

p h y s i c a l  l aws  in  t h e  d e s c r i p t i o n  o f  n a t u r e .  
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Attempts to geometrize physical forces based on this complementarity 
showed only formal success (Hertz, 1958) until the pseudo-Euclidian metric 
of the space-time manifold was discovered in the special theory of relativity. 
Einstein achieved the description of the gravitational field in terms of 
Riemannian geometry. 

The global symmetry of the space-time geometry of special relativity 
with respect to the Poincar6 group is thereby broken and restricted to 
individual systems of reference in the local limit (see Pauli's version of the 
principle of equivalence (Pauli, 1958). But even in this local limit, the 
geometrical formulation does not lend a unique preference to the Poincar6 
group because the principle of equivalence can also be formulated in terms 
of a family of other groups, for example the de Sitter group (Halpern, 
1977a). Poincar6 covariance is, however, still postulated in the local limit for 
the "alien in the theory" the matter fields on the right-hand side of 
Einstein's equations. 

Attempts to include also the matter fields into the geometry began with 
Weyl's gauge theory which describes electromagnetism in terms of a non- 
Riemannian connection (Weyl, 1922). A different approach suggested by 
Kaluza (1921) and subsequently by Klein (1926) fuses formally the mani- 
fold of the electromagnetic gauge group with that of space-time into a 
five-dimensional pseudo Riemannian space. The metric can be projected on 
space-time and describes besides the gravitational, also the electromagnetic 
potentials. The method can be generalized to non-Abelian gauge groups 
(De Witt, 1964). 

This successful (although rather formal) geometrization raises the ques- 
tion how Riemann's complementarity of geometry and physics may affect 
the uniqueness of the invariance group of a physical theory. W e h a v e  
already pointed out that the Poincar6 group enters into the geometrical part 
of general relativity only in a limit and is even there not uniquely de- 
termined (Halpern, 1983a). We may consider it as a rather arbitrary 
construction: if the group does not apply rigorously (and this is the case 
whenever the performance of a measurement perturbs the symmetry) we are 
postulating the existence of culprits responsible for the symmetry breaking 
(and expect that even these will fulfill the law of the group). This is not a 
unique procedure. We may, however, be able to make one choice which 
allows a much more economic description than others (as the Poincar6 
group and Einsteinian physics proved to do compared to the group Galilei 
and Lenard's "German physics," which required always new physical dei ex 
machina). 

To illustrate the situation, let us bring the principle of inertia into a 
modernized group theoretical from: A body moves along a timelike orbit of 
the translation group in Minkowski space unless forces act on it. 
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We compare this with an alternative version: A body moves along a 
timelike orbit of the de Sitter group in the de Sitter universe unless forces act 
on it. 

The de Sitter universes are generalized four-dimensional spherical 
surfaces immersed into a five-dimensional manifold with one or two imagin- 
ary coordinates; the first is spatially closed and open in the timelike 
directions, the second is open in spacelike directions, but closed in the 
timelike directions. The corresponding de Sitter groups S0(4,1) and S0(3, 2) 
are the groups of motions on these surfaces. If the radius of the sphere is 
very large, one may locally not be able to distinguish them from the 
Poincar6 group; but the mathematical structure of these simple groups 
differs fundamentally from that of the Poincar6 group, which is not even 
semisimple. 

A priori considerations such as the interrelation of all natural phenom- 
ena and the beauty of the mathematical structure would definitely lend 
preference to the simple group. 

Both versions of the principle of inertia admit every timelike geodesic 
as a trajectory. The de Sitter covariant version admits, however, in addition 
a six-parameter family of nongeodesic one-dimensional orbits. These cannot 
be simply discarded without violating the spirit of the principle, because we 
are dealing here with a simple group where all generators are interrelated. 

The equations of the one-dimensional orbits are (Halpern, 1980a, 
1982a) 

D s a b  .~  c a b  . ~ k  = O, 
"3 ; k S ~ = - S t'~ (1) 

(Rkh,b the Riemann tensor) 
If S~t'4: 0 initially, the orbit is in general not geodesic. The equations 

fulfill, however, the more general conditions that have been deduced by 
Mathisson (1937) and Papapetrou (1951) from the conservation laws for the 
motion of a test particle with dipole structure (inner angular momentum) in 
general relativity. 

This raises the question as to whether a theory based on local de Sitter 
covariance yields necessarily a less economic description. After all, the 
foregoing promises that it may describe the mysterious phenomenon of 
inner angular momentum on an equal footing with conventional motion. 
The task is in any case tempting to construct a modification of general 
relativity rigorously based on local covariance with respect to a group that is 
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at least semisimple. This should make a difference to local Poincar6 covari- 
ance, namely, if the task is performed rigorously enough that the structure 
of the semisimple group comes into play. Most discussions on the subject 
try to avoid just that by insisting that the "respectable" Poincar6 group 
physics be obtainable in the limit when the radius of the universe tends to 
be infinite. This reduces the introduction of the de Sitter group (and other 
alternative groups) to an artifice for the elegant formulations of conven- 
tional physics. The first attempt for a modification of general relativity 
based on the de Sitter group is probably due to Lubkin (1971). This work 
stresses already the purpose of a modified symmetry. The present author 
adopted early the point of view that the introduction of a group symmetry 
obliges to search for all of its consequences. The absence of some orbits is 
not admissible in case of a simple invariance group without further justifica- 
tion. It was speculated that these orbits may be unobservable in laboratory 
dimensions for statistical reasons and manifest themselves in the very large 
- -or  as a kind of virtual motion in the small to produce the phenomenon of 
elementary particle spin (Halpern, 1979a). Taking the group covariance 
seriously, led to the construction of a mathematical model which is based so 
completely on group theory that it was entitled "At the Beginning, there was 
the Group." The resulting physical theory (Halpern, 1979b, 1980b) is 
probably more than any other dictated by a mathematical structure (group 
geometry)--not, however, by mathematicians. Technicalities can hardly be 
avoided to introduce it, ~ but the results can be presented in the conventional 
form of a Yang-Mills theory in curved space. 

The group G with semisimple Lie subgroup H acts on the factor space 
G/H.  The natural projection It: G ~ G / H  defines geometrical objects on 
the factor space in terms of those of the group manifold. A metric g is thus 
defined on G / H  by the Cartan-Killing metric -I, on G. The metric of the 
de Sitter universe results if G is SO(3,2) or SO(4,1) and H is SO(3,1). 
P(G, ~r, G/H,  H)  forms a principal fibre bundle and "r defines a horizontal 
vector space which is perpendicular to the vertical vectors. 

The projections of the one dimensional group orbits on G (which are 
geodesics) onto the base manifold B = G / H  are candidates for the equa- 
tions of motion of a test particle. One has to generalize the exclusion of 
spacelike trajectories to eliminate those orbits which neither describe 
structureless nor spinning test particles. 

The construction outlined derives topology, metric, and the modified 
law of inertia from group geometry alone. The symmetry breaking due to 

t Most of the mathematical apparatus was presented at this meeting in the lecture of Dr. 
Bleecker. 
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localized mass distributions has then been introduced by the author in the 
following way (Halpern, 1979b, 1980b, 1980c): The metric ~, of G can be 
shown to fulfill homogeneous Einstein equations in (r = dimG) dimensions 
with a cosmological member. A localized mass distribution should give then 
rise to a right-hand member of these equations. Admissible solutions for the 
generalized metric ~, must retain the topological properties of the fibre 
bundle P(G, ~r, G/H, H) and thus have Killing vectors with the commuta- 
tion relations of the generators of H to ensure the projection ~r. One arrives 
this way at a multidimensional Kaluza-Klein theory with non-Abelian 
gauge group (Halpern, 1979b, 1980b). Generalized theories of this kind have 
been considered before, (De Witt, 1963) but this seems to have been the first 
case where such a theory in r dimensions is derived from a generalization of 
a Lie group G r. Previous work which starts out from a group manifold Gr 
(Neeman and Regge, 1978) attempts agreement to conventional Poincar6 
group physics by "softening" the conditions imposed by the group geometry 
before these do affect the physics as stringently as in the present case. The 
approach can then also not lead consistently to a Kaluza-Klein type of 
theory which was adopted in this context only later by rather artificial 
means~ 

The author had adopted the view that once determined on a particular 
invariance group, mathematics should dictate the physics, irrespective of 
how fashionable and even unrealistic the outcome may appear. The above 
construction was compared with a fairy tale (Halpern, 1982b) which has a 
pre-established outlook and features which seem to be irreconcilable with 
reality yet which at a closer contemplation yield a deeper insight than a 
profane realistic view. 

The opinion is rather fashionable that it is a virtue of general relativity 
to admit for its solutions a choice of topologies. A physical verification for 
this assertion can hardly be supplied. A priori it appears equally likely that 
the universe admits only one topology as is the case in the present theory. 

The Killing vectors of the Kaluza-Klein theory restrict the solutions of 
Einsteins's equations in r dimensions so that in four dimensions they are 
equivalent to a metric and r -  4 Yang-Mills fields. Further restrictions on 
the sources and the initial conditions can be imposed so that the connection 
on P is Riemannian and thus torsion free (Halpern, 1983b, a). The theory 
in this case becomes much more transparent. It is a metric theory in four 
dimensions. The field equations are derived from a Lagrangian which 
contains also terms which are quadratic in the Riemann tensor. They admit 
the vacuum solutions of general relativity with cosmological member. The 
resulting equations of motion of test particles due to the nonlinear term are 
generalized from geodesics to the form of equations (1). Particles which 
describe the generalized motion interact with the metric-like particles with 
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spin structure in general relativity. This is demonstrated by the energy 
momentum tensor of a field which is structureless in r ---10 dimensions. In 
four dimensions this yields an energy-momentum tensor plus six Yang-Mills 
currents. The Riemannian connection allows to combine all these into one 
energy-momentum tensor which depends, however, on the tetrades, thus 
giving evidence of a spin structure--even of a Fermion structure. 

The "charges" of elementary particles of a Yang-Mills theory can be 
related to the elements of the fundamental group and thus assume only 
discrete values if H is multiply connected. A mysterious feature of all 
Kaluza-Klein theories has hitherto been the gigantic ratio between these 
charges and the gravitational charges of an elementary particle. The justifi- 
cation that the extensions of the manifold of H have to be so microscopic to 
make it unobservabte, appears not very convincing, as the homogenuity of 
the space should achieve that. Staying faithfully to our mathematical 
guidelines rewards us in the case of SO(3, 2) with a fascinating outlook: The 
wOrld line of a test particle with suitable spin (Fermion) occurs on the 
time-closed de Sitter universe at a given time not just once, but with a large 
number of appearances at different space points. It describes accordingly as 
many fermions of the same type. The extension of H is related to the total 
of all charges and needs no artificial reduction. 

The idea that all fermions of one type are due to a single world line has 
been suggested by Wheeler and its inadequacies led to Feynman's positron 
theory (Feynman, 1965). It emerges here naturally from the group structure. 

Suitable units for our picture make the velocity of light as well as the 
gravitational constant G dimensionless and one. The unit of length is the 
radius of the universe R. This makes Planck's constant of dimension of 
length squared and smaller than 10-12~ The work was started in the hope 
that application of the formalism to SO(4,2) and projective relation of the 
base manifold will yield a generalization of Jordan's theory (Jordan, 1955) 
unifying electromagnetisms and gravitation in accord with Dirac's present 
form of the large number hypothesis (Dirac, 1979). 

The limitation of the theory to vanishing torsion appears artificial, 
reminding somewhat of the restricted conformal metric theory of Einstein 
and Fokker (Einstein and Fokker, 1914). The presence of torsion generalizes 
the curvature tensor in equations (1) and the nonlinear part of the field 
equations. It results in a modified spin-spin interaction of the sources due 
to additional degrees of freedom of the fields. These can only be calculated 
if the interaction of the tetrads with the matter fields are known. This is in 
general not the case for microscopic averaged description of sources as it 
occurs in general relativity. Every macroscopic rotating body is subject to 
binding forces of fields with spin. Torsion is here not localized and 
identified with spin as in the Einstein-Cartan theory and its newer versions 
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(Cartan, 1923; Hehl, 1980). Torsion is here associated to independent 
degrees of freedom and propagating. It has to be assumed that it interacts 
universally with all angular momenta. The relation to Mach's principle is 
thereby deeply modified in this theory. The present work contains only a 
preliminary study of the properties of the source term. Special caution has 
to be applied also to the introduction of quantum laws because one has to 
expect deep-going modifications. 

A consistent description of spin in terms of representations of the 
Poincar6 group exists in the conventional theory (Wigner, 1939; Laurent, 
1963) and one may (somewhat artificially) even bring a Poincar6 covariant 
theory into a similar form as in our theory. The relation to the metric is then 
much less convincing and the mathematical beauty is impaired. We prefer to 
make full use of our right based on Riemann's complementarity. 

Why do we renounce on the acclaim that could be collected by creating 
a super symmetric generalization of our theory? We believe that mathemati- 
cal sophistication leads to physical progress mainly in the cases where we 
either cannot manage to perform our calculations within a simpler mathe- 
matical apparatus or when clear and detailed physical concepts are missing. 
It can easily prove misleading in other cases. Suppose Balmer's formula had 
not been discovered. The spectral problem would today no doubt be 
attacked with the most sophisticated means of analysis. Would this help or 
hinder the finding of Bohr's quantum rule? Many mathematicians ad- 
mittedly feel attracted to spaces with supersymrnetric structure only because 
of their mathematical sophistication. A main task of the physicist different 
from the mathematician is to separate from a diverging number of mathe- 
matical possibilities the one best adapted to the phenomena. The formula- 
tion of a diverging 2 number of theories even if so general, that probably 
some natural phenomena are approximated occasionally by them, can be of 
negative merit to physics. 

It can of course, not yet be claimed that the concepts of the present 
theory are physical, but they are clear as a model and they suggest no other 
symmetry between fermions and bosons than that arising naturally by the 
composition of bosons from fermions. The symmetry suggested by Golphand 
and Likhtman (1971) does not occur naturally here. We do not have yet to 
struggle with renormalization problems and have thus no reason to intro- 
duce a supersymmetric version. It is hoped that the structure that seems to 
introduce spin will itself teach us also more about its statistical laws. 

2People who remember how fashion creations started in the late fifties to compete in 
accentuating curves and symmetries that easily catch our attention, going far beyond that 
which can be expected in nature, could by analogy be drawn to the expectation that even in 
physics, superfashion may finally give way to a new miniline. 
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2. THE GROUP MANIFOLD AND ITS GEOMETRY 

The theory in its final four-dimensional form can be expressed in the 
formalism of classical general relativistic field theory. The fundamentals of 
the differential geometry of Lie groups are, however, a prerequisite for an 
understanding of its structure. The use of theorems from the theory of fiber 
bundles allows an elegant global presentation. The reader does not really 
need these for the examples considered because their bundles are trivial. 

We consider an r-dimensional Lie group G which acts transitively on a 
k-dimensional manifold B as a group of transformations. Then in general, 
G has an (r - k)-dimensional Lie subgroup H which leaves one element of 
B invariant. B is then homeomorphic to the coset space G / H  and a natural 
map ~r from G onto B is defined. (The group manifold of G is the bundle 
space of the principal fiber bundle P(G, r H, B) with base B and group 
and typical fiber H)(Steenrod, 1974; Nomizu, 1956). 

We keep here always the example of the de Sitter groups, especially 
SO(3,2) for G and the Lorentz group SO(3,1) for H in mind. B can then 
be identified with the manifold of the de Sitter universe. 

The multiplication of group elements: c = a.b in a local chart reads 

c '  = d / (  a ,  b ) = d / (  a 1 . . . a r ,  b 1 . , . b r )  (2) 

forming the differential: 

dct= V2(a,b)dau + W ' ( a , b ) . d b "  (2a) 

associativity: q~(a, hb)= q,(ah, b) implies that the r one-forms (covariant 
vectors) 

A T ( x ) = W , ( x - l , x ) . a x  ,, (3) 

are invariant with respect to left translations G • G ~ G: L,,x = a.x and the 
r one-forms 

A T ( x ) = V t u ( x , x - 1 ) d x U  (3a) 

are right invariant. 
A left-invariant two-form (covariant antisymmetric tensor) can be 

expanded in terms of the exterior product of pairs of left-invariant one-forms 
with constant coefficients. L* (the pullback of L~ acting on forms) corn- 
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mutes with exterior products and the exterior derivative d so that a relation 

dAr + (1 /2)curv  Au A A v= 0 (4) 

is fulfilled for constant Curv = - Cvru (structure constants). In components 
with commas denoting derivatives: 

A r ~ . s - A r ~ . t + ( 1 / 2 ) c u r v ( A U . A V - A U t A V ) = o  (4') 

the right-invariant forms fulfill the corresponding equations 

d A  r -  (1/2)CuTv X u  A ~-v= 0 (4a) 

with the same structure constants (Maurer-Cartan equations). 
The r left-invariant vector fields A s dual to the forms AT: AT(As) = 6rs 

form a base to the tangent space of the manifold. They fulfill 

[ Au,  Av] = cuSvAs (4b) 

The right-invariant vectors dual to the X r fulfill correspondingly: 

[Au, Zv] =-cuSvAs (4c) 

[Au, Av] =0 (4d) 

A Lie group is simple if it has no proper invariant subgroup, and semisim- 
ple if it has no Abelian invariant subgroup. The components of the 
Cartan-Kill ing metric ~, on the manifold of a semisimple group G are in an 
unholonomic frame (Eisenhart, 1933): 

Ysr = CsUvCTVu (5) 

and in local coordinates: 

s r (5a) "/.~, = A . ' /ST A ,, 

The Ricci tensor of this metric on G fulfills the relation: 

R,, o = 1/4"y.o (6) 

The author has reinterpreted this relation into: 

R,., - 1/2y,.,,R + 1 / 8 ( r  - 2)'y.,, = 0 (7) 

that means the metric fulfills homogenous Einstein equations in r dimen- 
sions with a cosmological member (Halpern 1979b, 1980b. c). The author 
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showed that the metric "t fulfills all the conditions of a special solution of a 
peculiar form of a Kaluza-Klein theory in r dimensions with gauge group 
H (Halpern, 1979b, 1980b, c). 

The (group) manifold P is locally homeomorphic to B • H. The 
mapping P - ,  H depends at each point of B on the particular local 
trivialization chosen. 

We shall frequently use local charts in such trivilizations and adopt our 
notation as follows: 

All indices (capital for unholonomic bases and small for (coordinates) 
running from 1 to K, by letters in the alphabet before L. Indices running 
from K + 1 to R, by letters from L to inclusive Q. Indices running from 1 
to R (dimension of group manifold) are denoted by letters after Q in the 
alphabet. The summation conventions are also adjusted to this rule. Thus, 
AhB h or  AItB H implies the summation from 1 to K (dimension of base 
manifold). AraB" implies summation from K + I  to R and A=B = from 1 to 
R. We shall use this convention without further warning. 

A base of left-invariant vectors is always so chosen that the last r - k 
vectors A M belong to H. A local trivialization admits always coordinate 
systems in which the components of these Ate do not depend on the k 
coordinates x i and all their x i components also vanish (Eisenhart, 1933). 

B is the space of left cosets of H. Right translations give rise to 
coadjoint transformations of the teft-invaria~t forms (and adjoint transfor- 
mations of left-invariant vectors): 

L*-,R*~AS(x) = A,S(a)A'v(a)AV(x)  = ad(a-1)AS(x)  (4e) 

and correspondingly 

R*-,L*,~XS(x) = A S ( a ) X t v ( a ) A V ( x  ) = ad (a )AS(x )  (4e) 

It follows from the group property that the left-invariant base vectors A s 
and right-invariant A s are expressible as 

A ' s ( x ) = W t ( x , e ) = ,  R ' s ( x ) = V / ( e , x  ) (4f) 

Equations (2, 2a) shows that they are the generators of right and left 
translations. Equations (4b)-(4d) give the infinitesimal adjoint tranforma- 
tions of the base vectors. 

Adjoint transformations leave the structure constants and thus the 
metric t invariant3: 

[A=,~]=0 

3The Lie bracket is used in typescript for all Lie derivatives. 
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Applied to S =  M >  K this implies that a projection of the con- 
travariant metric tensor of 3' from P onto B by the differential of ~r is 
independent of the x m and thus uniquely defines a metric g on B. One can 
infer from equation (5a) that the orbits of one-dimensional subgroups are 
geodesics on P. 

The frame vectors A s can be chosen orthogonal to each other, with 
respect to the metric y. A horizontal vector space perpendicular to the 
vertical vector space spanned by the A m is thus defined; it is spanned by 
the A E. 

A connection form w is given by 

am(x)dm, (8) 

with /[M the element of the Lie algebra pertaining to A M. If, as in our 
examples, all structure constants of the form CMPE vanish, the required 
transformation properties of w follow from equation (4e). 

The curvature two form ~2 of w is give by Cartan's structure equations: 

f~ = ao~ + [ ~o, w ] (9) 

its coordinate components are 

aik = F/~AM = (AkM., -Ami,k +A~eceMQAQk)AM (9a) 

C ~  belong to H only so that this expression does not vanish when equation 
(4a) is fulfilled. On the group manifold one has thus 

M _ _  ~ M . ~ E * F  F~k - (9b) - -  c E F . , " t i Y l k  

The pseudo-orthogonal group H is a restriction of the general linear 
group, so that AMCMer can be related to a linear connection on the frame 
bundle with a soldering form: 0 = AE~E, where the eE form a vector base 
on R k. The torsion form 0 is defined in terms of the (vector)-values which it 
assumes for two vectors U, v: 

(lo) 

in coordinate components for our case: 

E M F Oi k E^ : E _ A  E + c M  F ( A i , A k _ A ~ A F ) ) ~ E  = Fikelr (Ak . ,  i.k (10a) 

The Maurer-Cartan equations (4) for T = E show that the construction is 
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torsion free. The (pseudo-) orthogonal H implies the vanishing of the 
covariant derivative of the metric so that on the group manifold the 
connection is Riemannian. 

The left-invariant vector field of a horizontal generator of G is horizon- 
tal on the whole group manifold. The projection of an orbit of this field is a 
geodesic on B [S = 0 in equation (1)]. This is in our examples the analog of 
a maximal circle on the generalized sphere. A timelike geodesic on B is 
closed in the case of G = SO(3,2). If the one-dimensional group orbit on G 
has also vertical components, its projection on B, if timelike, will in general 
no more be a circle, but recur repeatedly at different space points for any 
given time. The number and positions of the recurrences depends on the 
ratio of the horizontal and vertical components. 

3. THE SHADOW PLAY OF PHYSICS ON SPACE-TIME 

We have obtained in Section 2 the metric of the de Sitter universe as 
well as the geodesic trajectories of test particles from the geometry of the 
group manifold alone. The structure of the simple de Sitter group, which 
exhibits a maximal symmetry, gives us no justification to exclude other 
timelike orbits as candidates for particle trajectories. Our aim is to explore 
the physical implications of an invariance group in all its aspects and we 
should not introduce arbitrary modifications at this stage. The orbits of all 
one-dimensional subgroups of a (pseudo-) orthogonal group on the homoge- 
neous space are given by the equations (1). We have already indicated in 
Section 1 how we want to interpret the nongeodesic orbits. Group geometry 
also determines the metric and topology of the universe. We attempt just to 
approximate the description of local inhomogenous matter distributions by 
a right-hand member of the field equations which we obtained from group 
geomety and we know that this must result in the above orbits of test 
particles, tn classical general relativity solution of the homogeneous equa- 
tions are identified with the absence of matter (this is assumed by most 
people even if one has a cosmological member). We keep meanwhile this 
assumption although it may later have to be modified. 

The general theory of relativity requires boundary conditions for the 
field equations. The present theory provides the cosmological boundary 
conditions and further conditions for the solutions of the r-dimensional 
field equations from group geometry. 

The generalized solution G must retain the properties of a bundle space 
of the same principal fiber bundle P(G-, ~r, H, B) as before. (G, B have the 
same topology as in case of the group manifold and H forms still the 
structure group and typical fiber). The metric y is generalized, but r -  k 
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vector fields A M must still exist on (ff that are Killing vectors [fulfill 
equation (5b)] and obey the commutation laws of generators of H. ~, still 
determines a horizontal vector space which is perpendicular to the vertical 
A M. The existence of a (Lie-algebra-valued) connection form w and a 
(Rk-valued) soldering form 0 is met by requiring the existence of k 
horizontal orthonormal vector fields B E which fulfill 

[A M, BF,] = CMFEBF (4b') 

with the structure constants of G. Only the commutation rules between 
these k vector fields remain undetermined. 

To give w the form of equation (8) the ( r - k )  one-forms A M are 
modified to fulfill: AM(AN)= •ff and AM(Be)= 0. They still fulfill equa- 
tion (4e) for a ~ H. 

0 can be expressed with the k one-forms B E, fulfilling BE(AM)= 0 
BE(BF) = 6if, as O = BEOE. Thus equations (4e) and (4b') guarantee the 
correct transformation properties of the forms with respect to the right 
action of H on P. The curvature two-form f~ is still given by equation (9) 
and the torsion form 0 by equation (10) expressed in terms of the B ~:. The 
projected metric g = ~r'3' on B is now generalized. Its components are 

gik  = Bi-E~' EFBkF, Y,k = B iETEFBF + AM"~MNANk (11) 

The restrictions imposed on the solutions y of the generalized field 
equations imply that for any local trivialization the Lagrangian for the 
left-hand member of the field equations which depends on the metric 3', is 
equivalent ( = )  to a Lagrangian on the base manifold depending on the 
metric g and the connection form. Choosing coordinates on the fiber so that 
det(A~t ) =1,  we obtain 

= + A)  = k' (g ,  A M) 

=v/-g(R'I"+I/4YMNZ~FN'J+ X) (12) 

For r--10 we have A - - - 2  and ~ =1/2; the difference arises from the 
curvature invariant on the group manifold of H. Other formulations of 
Kaluza-Klein theories choose a flat metric for this manifold (Kerner, 1968). 
The two de Sitter universes have here the same ~, but metrics of opposite 
signature. The Lagrangian in the four-dimensional form is that of a gravita- 
tional field plus the Yang-Mills field F g. 

The connection coefficients of our linear connection are in an unholo- 
nomic frame { B e, A M } given by 

rl.i E _ _ h i  - -M E (13) F -- D H A i  CM F 
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We can with the help of equation (10a) express this in terms of the 
Riemannian connection and the torsion tensor Fe.hk in a natural frame: 

F~h, ~ E �9 = BEF~,  (13a) 

The covariant derivative of g with this connection vanishes. 

Vhgob = gab,,, -- Fhebgae -- Fhe,,geb = 0 (13b) 

i The curvature tensor Fjh , in a natural frame becomes according to 
equations (9) 

i a 
G hk = r , j .h - E . ,  + r or,; - r ,  or,.;' ~ 

Fijhk = ,~'M_ .t Ai  xI (13c) �9 hkrdM l . r l j , , " l j  

so that the Lagrangian can be expressed as 

.,.~G(g, F )  = ~ - (  R .-k )k + 1 / 4 8 F i j h k F  ijhk ) (12a) 

The Lagrangian density is covariant with respect to general transforma- 
tions of the coordinates x r. The transformations generated by a change of 
local trivializations are of special interest. They are of the form 

X ' k = X  k, x ' m = q y " ( x h ,  a " ( x h ) )  (2b) 

with a(x h) E H depending on the points of the base. The coordinates of the 
points of the base remain unchanged. Comparison of the components of the 
forms A M , B E at points which have also the same vertical coordinates shows 
with the help of equations (4b',e) that they are related by an adjoint 
transformation. Only the components A,. M acquire in addition an inhomoge- 
nous term: 

A ; M ( x ) = a d ( a ) A y - A T ( a ) a " ( x h ) ,  r (2b') 

The dual vectors are transformed accordingly. The B~ in particular, un- 
dergo a tetrad rotation; only the B~' have an inhomogeneous term. In the 
(k = 4)-dimensional form of the theory the coordinate transformation asso- 
ciated with the change of local trivialization manifests itself as a gauge 
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transformation of the potentials A ~ ( x  h) and fields F ~ ( x  h), combined with 
a rotation of the tetrads B~. The fields F R according to (2b'), undergo a 
homogeneous adjoint transformation. 

Inhomogeneous localized matter distributions are described by a right- 
handmember Vr~ T~[ of the field equations. It is derived from a matter term 
�9 g'M of the Lagrangian which depends on , /and the matter fields: 

l ~  - - ~  ~ +  L~' M (12a') 

The Kaluza-Klein theory requires for every Lagrangian the conditions: 

[AM,~e] = 0  (12b) 

Together with equation (5b) this requires for the energy-momentum tensor 

[AM, TM] --- 0 (12c) 

besides the conservation law. 
The geodesics of the metric - /on G are solutions of the equations of 

motion resulting from our field equations (Papapetrou, 1951). If we ascribe 
to them the orbit of a test particle, we must keep in mind that its matter 
distribution does in general not fulfill equation (12c) even in the limit. The 
description of the motion is thus only an approximation. We consider 
nevertheless first the projection of these trajectories on B, although they are 
complicated by the tetrads, the orientation of which depends on the points 
of the fibre cut by the geodesic. The general equations for the projection of 
geodesics on B are 

D S~b 

Sat, 

= 1/2Fkh, ,b~hS ab 

= sab;k.tk =l/23ckshb(F.~hk -- Fkah -- Fhk'~)--(a ~ b) 

= - S ba (la) 

The "spin tensor" S "b vanishes if the initial direction of the geodesic is 
horizontal. If the torsion tensor F.~,c vanishes, we have equation (1) with the 
Riemann tensor Rkh,,b on the right-hand side. These equations describe also 
the orbits of a whole family of semisimple groups on their homogeneous 
spaces. The right-hand side in case of our pseudo-orthogonal group assumes 
the simple form: Skh.t h. The projection of timelike horizontal geodesics is 
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geodesic and closed in this case. The equations (1) describe thus the 
trajectories also in case of a general metric g if torsion vanishes. They are 
then still in accord with Papapetrou's conditions for the motion of spinning 
test particles (Papapetrou, 1951). These conditions are necessary, but hardly 
sufficient for the description of the particle. One notices that in case of more 
complicated curvatures S i ,  k k cannot remain zero. (Actually this is the more 
interesting situation we encountered.) This poses no problem in curved 
space, but it persists in a flat space region. This may mean that in the rest 
system the center of gravity does not coincide with the coordinate of the 
particle. A more detailed study of an energy-momentum tensor T ,  which 
does fulfill equation (12c) has to be made in order to see how the theory 
describes spin. We first limit the contemplation to the case of vanishing 
torsion. In k = 4 dimensions the left-hand member is derived from the 
Einstein Lagrangian plus a cosmoslogical term quadratic in the curvature 
plus a cosmological constant h. This yields all vacuum solutions of general 
relativity with h and no doubt additional solutions about which little is 
known. 

We contemplate now the right-hand member first in all r dimensions. 
There occurs the energy-momentum tensor Tff ~ as source term. We assume 
that this term is structureless in r dimensions (e.g., that of a scalar field 
interacting with "r) 4. We choose again a coordinate system x "  on the fibres 
in which det(A, u )  = const. The r-dimensional formulation, because of con- 
ditions(5b) and (12c), is again equivalent to a k-dimensional one with ~ f f )  
depending besides of the matter field on g and AM. Defining Tff t4) by the 
variation with respect to g~, in analogy to equation (12a') and the current 

j ~  _ - &L#M , jkla,b] ---- JN r:k" NM_G.MEFr.FH Aa.,,1E.:IH,~t, (14) 

one finds that the conservation lav:s V/-~- T~:, = 0 can in k = 4 dimensions be 
expressed as 

(vfg T*k(4),;k ~ = *~'~'"hJu (15a) 

.k . Q ;k,~P (15b) Ju ,  k ~" ~P UJQ"tk  

The components A~. depend on the point on the fibre and they occur thus 
naturally in conjunction with a preferred system of tetrads Bf.  A gauge 
transformation affects both of them. [If torsion vanishes equation (13) 

4The scalar field may have several components (a complex field has two components). It is a 
vector in the Hilbert space of square integrable functions of x " .  
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identifies am- E ok with the Ricci rotation coefficients which are expressi- -'l k C M F D H  

ble in terms of the B E (Eisenhart, 1932).] The result of the r-dimensional 
theory can be expressed on the base. The matter field (which is structureless 
in r dimensions) due to its x "  dependence, projects on the base with an 
inner structure. This structure should be a representation of H if we want to 
describe a boson field in the simplest way. The coordinate frame for the 
connection can then be used. To describe fermions we have the choice either 
to use the coveting groups of G and H (and compromise the spin quantiza- 
tion mechanism outlined) or expand on the remarkable new possibility 
suggested in the introduction. Equation (12c) remains valid even for spin- 
nors which are a representation of the covering group of SO(3,1) rather 
than of this group itself. The tetrads are in this case required to "bridge" the 
representation to the coordinates. 

The condition which we have posed, that the tensor T g be in accord 
with equation (12c) cannot be fulfilled with a test particle which is point like 
on G. The tetrads in this case can therefore not be eliminated so that the 
difficulties mentioned previously for the interpretation of the orbits in 
special cases result. It served us mainly for heuristic purposes. 

We consider now the general case where the coordinate frame of the 
tetrads is not used. We combine Tff ~4) and jk to a total matter tensor r on 
the base by setting 

(16) 

After a lengthy calculation one finds 

V~'rab=Tr'yTMab(O+12(jk[b'al+ jblk'~l+ j~lk'bl); k (17) 

The form of the term in the parantheses is similar to that found by 
Rosenfeld (1940) for the symmetrization of the canonical tensor, r is 
conserved if the field equations are satisfied. 

The restriction to vanishing torsion results thus in a metric theory in 
which spin of matter fields appears in the conventional form (without 
having been inserted). Spin-spin interaction occurs only via the metric. The 
theory differs besides this from Einstein's theory with cosmological member 
on the classical level by a large cosmological term quadratic in the Riemann 
tensor. Such a term occurs also in other gauge theories of gravitation related 
to spin rotations (Halpern, 1977b). 

The restriction to vanishing torsion appears artificial. The inclusion of 
torsion leads to a new theory with an additional spin-spin interaction 
besides that caused by the metric. It is obtained by admitting a wider class 
of solutions of the r-dimensional metric theory. In k = 4 dimensions the 



860 Hal~rn 

Lagrangians ,Se a and *~('M are varied independently with respect to the 
metric g (or the tetrads BE) and the connection. Variation with respect to 
the metric yields the Einstein tensor with a cosmological member and an 
additional right-hand member apart from T M. This additional source term 
should not be very important in the case of weak fields. The variation with 
respect to the connection yields nonlinear equations of second order of the 
Yang-Mills type with the currents of equation (14) as sources. The tor- 
sion can then be calculated from the connection according to equation 
(13a). Notice that even the vanishing of the connection ~-, but not of the 
Christoffel connection (]h } can result in nonvanishing torsion. We must 
impose to all solutions due to localized sources, the cosmological boundary 
condition of vanishing torsion and de Sitter geometry in the limit of large 
spatial distances: 

7t-g[Rik -- 1 / 2 g i k ( R  + X ) +  Fi,,b~Fk "hr + F~it, cF~kb,. 

+ 2FabciFabr k --1/2gikFabcaFUb~a+ Tik M] = 0 (18) 

and for .9,0 M which do not depend explicitly on the tetrads: 

Vk (1/-~F bck)_ 1/2~-g-( F hak rk~, + 2 Fdr + j b,- 

Lb,.= 8~M 

= 0  (19) 

These equations apply to a fine grained theory in which the spin of the 
matter field appears in k = 4 dimensions explicitly. The structure of a 
macroscopic spinning particle in a coarse-grained theory may be modeled 
after this case. 

We consider the theory only as consistent if also a system orbiting 
under the influence of binding forces interacts with F in a similar manner. 
We consider the gravitational field providing the binding force. It is the only 
field we treated here in detail [the electromagnetic field we hope to be able 
to describe by a metric in a S0(4, 2) covariant theory]. 

We consider the periodic orbiting of two structureless particles due to 
their gravitational attraction. F and g have in this case to be such that at a 
larger distance from the system they are of similar form to that of a 
spinning system. This has to be achieved by the boundary conditions 
imposed. 

Even the two-body problem in the general theory of relativity is far 
from being solved; it may need much further study to prove in general the 
physical consistency of the coupling of torsion to spin and orbital angular 
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momenta. This is a condition for the exploration of such global aspects as 
Mach's principle in the present theory. 

Torsion and metric disturbances in an isolated system are coupled to 
matter by the same constant and should thus be roughly of comparable 
magnitude. 

Experimental verifications can be hoped from the study of elementary 
photon gyroscopes passing the neighborhood of such large spinning masses 
as the neutron stars of pulsars. The electromagnetic interaction promises, 
however, to be better understood when incorporated into a similar unified 
metric theory with the group S0(4,2). The Stanford gyroscope experiment 
is expected to be of sufficient sensitivity to detect the effects of torsion 
considered here. 
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